Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

5/2021>

CONTINUOUS INTERNAL EVALUATION- 1

Dept:EC	Sem / Div: VI	Sub:Microwaves and	S Code:18EC63				
		Antennas					
Date:25/05/2021	Time: 9:30-11:00 am	Max Marks: 50	Elective:N				
Note: Answer any 2 full questions, choosing one full question from each part.							

-

	Q N	Questions	Marks	RBT	COs				
ŀ	PART A								
ľ	1 a	Define voltage standing wave ratio. Derive the relationship between VSWR and reflection co-efficient.	9	L3	CO1				
	b	A Reflex Klystron is to be operated at 10GHz with dc beam voltage 300V, repeller space 0.1cm for 1 $\frac{3}{4}$ modes. Calculate P_{RFmax} and	8	L3	CO1				
	c	corresponding repeller voltage for a beam current of 20mA. Define the following losses in microwave network in terms of S parameter: I) Insertion loss, ii) Transmission loss, iii) Return loss, iv)Reflection loss	8	L1	CO2				
OR									
4	2 a	Derive an expression of the input reflection coefficient of a two port network with mismatched load.	8	L3	CO2				
ľ	b	Explain mode of oscillation of a reflex Klystron.	9	L2	CO1				
	С	A certain transmission line has a characteristic impedance of 75+j0.01ohm and is terminated in a load impedance of 75 +j50ohm. Compute: i) Reflection coefficient ii) The transmission coefficient.	8	L3	CO1				
PART B									
Ĺ	3 a	With a neat schematic diagram explain the working of reflex klystron.	8	L2	CO1				
	b	Derive transmission line equations by the methods of distributed circuit theory.	10	L3	CO1				
	c	Explain S - matrix representation of multiport network.	7	L2	CO2				
L	OR								
4		Explain the properties of S - parameters.	10	L2	CO2				
	b	Prove that impedance and admittance matrices are symmetrical for a reciprocal network.	8	L3	CO2				
	С	A transmission line has the following primary constants: R= 10.4 ohm/km, L=0.00367 H/km, G=0.8 x 10 ⁻⁶ mho/km, C=0.00835 pF/km. Determine the characteristic impedance, attenuation constant, phase constant and propagation constant.	7	L3	CO1				